

Packaged Hermetic Centrifugal Liquid Chiller D-1000 Series

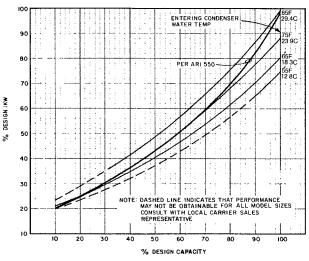
19DK

150-450 Tons 500-1600 kW

Product Data

Table of contents

	Page
Features	2
Typical Part-Load Performance Curve	2
Machine Components	3
Selection Procedure	. 4,5
Selection Data	. 5-10
Electrical Data	11
Dimensions	12


Features

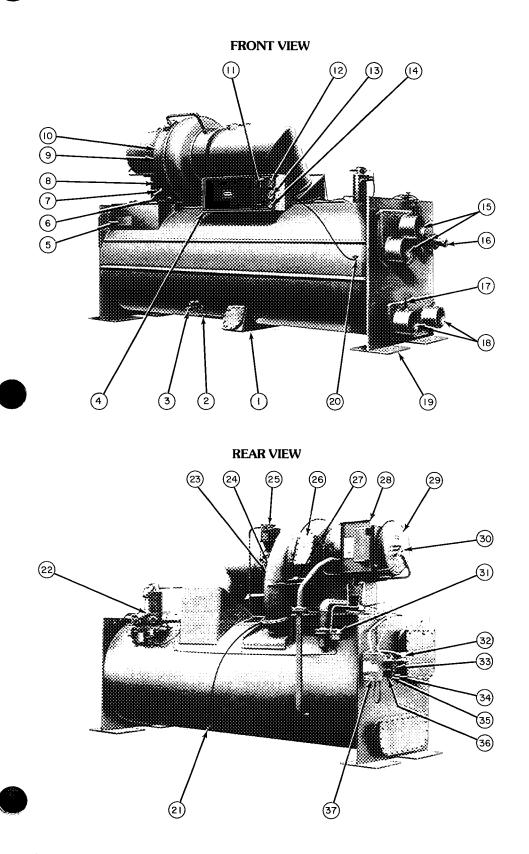
Æ

- Mix-matching of compressor, motor and unishell to meet specific requirements improves full and part-load performance.
- Single-stage compressor is compact and efficient; reduces operating costs under all load conditions.
- Compressor design allows operation at lower condensing water temperatures — even when the load dips to 10% of design.
- Movable inlet guide vanes open and close to maintain chilled water temperature control by varying refrigerant flow.
- Advanced Dynapoise transmission design is completely self-aligning; assures full uniform contact of gear teeth under all operating conditions.
- Hermetic design provides more efficient performance at part load. Keeps motor free of dirt and moisture. No need for costly ventilation or insulation.
- Atomized refrigerant sprayed over rotor and stator maintains correct motor temperature.
- High performance opti-therm tubes reduce energy usage External fins improve refrigerant-side heat transfer. Internal enhancement improves water-side heat transfer.
- Optional marine water boxes are available for cooler or condenser for easy tube cleaning and servicing.

	Page
Physical Data	13
Application Data	. 14-17
Controls	. 18,19
Typical Control Wiring Schematic	. 20,21
Control Sequence	22
Guide Specifications	. 22-24

- Multiple-pass arrangements maintain efficient velocities and provide better heat transfer.
- Thermal economizer subcools liquid refrigerant to increase refrigeration effect and reduce compressor power consumption.
- Automatic thermal purge removes air, water and noncondensables from refrigerant system. Keeps head pressure low for stable operation; indicates air and water leaks.
- Oil pump lubrication package directs oil to various compressor bearings. Flanges make it easier to service oil pumps, motor, cooler, and filter. Microprocessor control provides reliable pre-start lubrication and post-shutdown oil pump operation.
- Microprocessor control system is self-diagnostic; ensures reliable operation. Soft loading at start-up saves energy. Pre-alarm override capability prevents nuisance shutdowns. Programmable options include chilled water reset and power demand limit.
- Low load chilled water recycle control minimizes the number of compressor cycles and reduces motor current draw while maintaining chilled water within 5 degrees of set point.

19DK Typical Part-Load Performance Curve


 Manufacturer reserves the right to discontinue, or change at any time, specifications or designs without notice and without incurring obligations.

 Book 12
 PC 211
 Catalog No
 521-902
 Printed in U S A
 Form 19DK-1PD
 Pg 2
 6-85
 Replaces: 19DK-PD

 Tab
 5a
 Form 19DK-1PD
 Form 19DK-1PD</

Machine components

- _
- Flow Valve Chamber Cooler Charging Valve Refrigerant Level Sight Glasses 2 3
- ã -
- _ 5
- Field Wiring Knockouts Machine Informative Plate Oil Reservoir Temperature Gage 6 7
- Oil Heater and Thermostat Terminal Box
- 8
- Oil Level Sight Glass
 Return-Oil Temperature Gage (Hidden) 9
- Compressor Nameplate (Hidden)
 Microprocessor Control Panel
 Condenser Pressure Gage
 Cooler Pressure Gage
 Oil Pump Differential Pressure Gage 10
- 11
- 12
- 13
- 14 Gage 15
- Condenser Water Nozzles Safety Relief Device Chilled Water Control Sensor Cooler Water Nozzles 16 — 17 — 18 —
- 19 -Support Plates
- 20 Condenser Refrigerant Temperature Sensor

- 21 Cooler Refrigerant Temperature Sensor
- 22
- Sensor Purge Assembly Discharge Temperature Sensor (Hidden) Vane Seal Oiler Guide Vane Actuator Compressor Access Plate Inlet Volute Drain Strainer Compressor Terminal Box (less cover) 23
- 24
- 25
- 26 27
- 28

- (less cover) 29 Motor End Cover 30 Motor Rotation Sight Glass 31 Refrigerant Filter 32 Oil Cooler Solenoid Valve and
- 32 Oil Cooler Solenoid Valve and Plug Valve
 33 Oil Pump, Cooler and Filter Assembly
 34 Oil Cooler Drain Plug
 35 Oil Charging Valve
 36 Oil Pressure Regulating Valve (Factory Set)
 37 Oil Pump Starter, Factory Installed

Manufacturer reserves the right to discontinue, or change at any time, specifications or designs without notice and without incurring obligations. Book 2 PC 211 Catalog No 521-902 Printed in USA Form 19DK-1PD 6-85 Replaces: 19DK-PD Pg 3 Tab 5a

Selection procedure

This example represents the machine selected to satisfy a 380 ton (1336 kW) at 44 F (6.7 C) leaving chilled water and 85 F (29.4 C) entering condenser water condition. (See selection example.)

Selection data note

The Selection Data tables list typical combinations of heat exchanger, compressor size, motor size and compressor power input (IKW) that efficiently deliver the desired refrigeration capacity at specified condenser and cooler leaving water temperatures.

Selections have been made at commonly used design conditions of 2-pass cooler and condenser, 0 0005 fouling factor and 10 F water temperature rise (0.000088 fouling factor and 5.6 C temperature rise for SI tables) in accordance with ARI Standard 550-83 for centrifugal chillers.

To simulate evaporator fouling conditions other than standard ARI conditions, reduce the design leaving water temperature 2 degrees for each 0.0005 ft² • °F • h/Btu above 0.0005 (one degree for each 0.000088 m² • °C/W above 0.000088). To simulate condenser fouling conditions other than standard ARI conditions, increase the design leaving water temperature 2.5 °F for each 0.0005 ft² • °F • h/Btu above 0.0005 (1.25 °C for every 0.000088 m² • °C/W above 0.000088) Since the following example uses 0.0005 (0.000088), no temperature adjustment is needed.

For rapid selection of chillers operating at other than the listed capacities, use the following procedure:

I Establish design conditions.

Example:

Example:
Required Capacity 380 tons
Leaving Chilled Water
Temperature (LCWT) 44 F
Entering Condenser Water
Temperature (ERWT) 85 F
Chilled Water Temperature
Rise or Gpm* 15 F
Condenser Water Temperature
Rise or Gpm* 1140 Gpm
Pressure Drop Limitations
Cooler 30 ft
Condenser 30 ft
Power Limitation 260 IKW
Electrical Characteristics 460/3/60
Marine Type Water Box Required for Condenser
*Flow/Rise calculation:

EnglishSICooler:tons = (Gpm x Rise)/24kW = (L/s x Rise)/239Condenser:tons = (Gpm x Rise)/29kW = (L/s x Rise)/290For this selection example:

Calculate cooler gpm using given tons and temperature rise:

$$608 \,\mathrm{Gpm} = \frac{380 \,\mathrm{x} \,24}{15}$$

Calculate condenser temperature rise using given tons and gpm:

9 7° rise = $\frac{380 \times 29}{1140}$

II Make preliminary selection of heat exchangers at a capacity equal to or higher than required capacity.

Using example, enter Selection Data tables. A size 73 unishell produces 400 tons at 44 F cooler LCWT and 95 F condenser LRWT.

III Determine number of passes for selected heat exchangers:

Enter Pressure Drop curve.

At 608 gpm, size 73 unishell, the pressure drop for a 3-pass cooler with standard water boxes is 26 feet. At 1140 gpm, the pressure drop for a 2-pass condenser with marine type water box is 25 feet.

IV Adjust leaving water temperatures for number of passes and for temperature rise:

Enter Pass-Rise Temperature Adjustment table and find:

At 3-pass and 15 F rise (cooler) there is a +2.0 adjustment required. At 2-pass and 9.7 F rise (condenser) there is no adjustment required.

For cases where temperature adjustment is required, you may find it necessary to round off to the next most severe condition.

Higher rise chilled water applications are increasing in popularity due to the savings realized — not only in chiller operating cost, but also in pumping cost. Higher rises are more compatible with coil performance, and make possible the use of smaller size pipe, pump and fittings, for first-cost savings.

V Make final selection of heat exchanger and compressor.

In this example, no condenser adjustment is necessary, but a +2.0 cooler temperature adjustment is required. Enter the Selection Data tables using 46 F adjusted cooler LCWT and 95 F adjusted condenser LRWT. The 73 unishell will produce 417 tons, with a size 354 compressor, using 280 IKW.

VI Adjust power input (IKW) if the required capacity is less than the capacity of the selected unit.

Multiply the power input of the selected unit by the required capacity divided by selected unit capacity. Required IKW

 $\frac{380 \text{ tons required}}{417 \text{ tons selected unit}} = 255 \text{ IKW}$

VII Make motor selection — From the Electrical Data table, choose the motor with a maximum IKW that exceeds the required IKW

Max IKW of size CM motor = 265 Required IKW (step VI) = 255 Use size CM motor.

Note restrictions on motor-voltage and motorcompressor combinations in the Electrical Data section before finalizing motor selection.

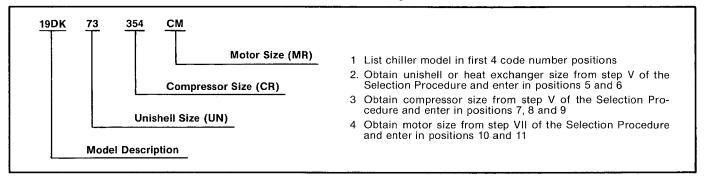
VIII Establish electrical data for selected motor

If supply voltage is same as design center voltage, obtain the rated load amperage (RLA), locked rotor amperage (LRA) and overload trip amperage (OLTA) directly from the Electrical Data tables.

RLA = 1.44 x IKW = 1.44 x 255 = 367 OLTA = 1.08 x RLA = 1.08 x 367 = 396 LRA Delta = 1757

If supply voltage is different from design center voltage, adjust the amperage as indicated in the Electrical Data note.

It is recommended that any selection be verified using Carrier's Computer Selection Service through your local Carrier office. In addition, maximum tonnage for any of the listed component combinations, selections for other than the listed components, selections at other than the listed conditions, or selections requiring lower input kW per ton can be obtained.


Pass-Rise Temperature Adjustment (F/C*)

	TER P RISE		COC			0		DENSE SSES	R
F	С	1	2	3	4	1	2	3	4
5 6 8 10 12 14 15 20 25	2.8 3.4 5.6 6.7 7.8 8.3 11.1 13.9	-20 -25 -35 -50 -60 -	+0 5 +0 5 0 0 -0 5 -0 5 -0 5	+15 +15 +15 +15 +20 +20 +20 +25	+2 0 +2 5 +2 5 +2 5 +3 0 +3 0 +3 5 +4 0	+2 0 +2 5 +3 0 +3 5 +4 0 +4 5 +4 5 +5 5 +6 0	000000000000000000000000000000000000000	-10 -10 -15 -15 -15 -15 -15 -20 -25	-15 -15 -20 -20 -25 -30 -35

 * Factors shown are for $^{\circ}$ F $\,$ When working in $^{\circ}$ C, convert factors by dividing by 1 8 $\,$

Selection data

Model Number Description

→ Selection tables — English

19DK44	19DK44 UNISHELL (125 NOMINAL TONS)					
ADJ LVG COND WATER TEMP (F)		ADJ LVG (ADJ LVG CHILLED WATER TEMP (F)			
		42	44	46		
90	Tons	131	134	138		
	IKW	101	100	95		
	CR	114	114	113		
95	Tons	121	125	131		
	IKW	100	98	100		
	CR	115	114	114		
100	Tons	112	118	121		
	IKW	101	101	100		
	CR	116	115	115		

19DK55 UNISHELL (200 NOMINAL TONS)

ADJ LVG COND		ADJ LVG CHILLED WATER TEMP (F)				
WATER TEMP (F)		42	44	46		
90	Tons	209	215	228		
	IKW	147	148	145		
	CR	174	174	173		
95	Tons	195	200	210		
	IKW	149	143	148		
	CR	175	174	174		
100	Tons	179	190	200		
	IKW	148	149	149		
	CR	176	175	174		

19DK73 UNISHELL (400 NOMINAL TONS)

ADJ LVG COND		ADJ LVG CHILLED WATER TEMP (F)			
WATER TEMP (F)		42	44	46	
90	Tons	412	425	436	
	IKW	278	280	263	
	CR	354	354	353	
95	Tons	385	400	417	
	IKW	279	275	280	
	CR	355	354	354	
100	Tons	354	375	391	
	IKW	277	279	277	
	CR	356	355	354	

19DK63 UNISHELL (300 NOMINAL TONS)

	G COND	ADJ LVG CHILLED WATER TEMP (F)				
WATER	TEMP (F)	42	44	46		
90	Tons	331	341	344		
	IKW	230	232	214		
	CR	284	284	283		
95	Tons	293	300	333		
	IKW	217	209	231		
	CR	285	284	284		
100	Tons	285	294	309		
	IKW	230	232	232		
	CR	286	286	285		

9DK78 UNISHELL (450 NOMINAL TONS)					
ADJ LVG COND WATER TEMP (F)		ADJ LVG CHILLED WATER TEMP (F)			
		42	44	46	
90	Tons	459	471	491	
	IKW	307	306	292	
	CR	404	404	403	
95	Tons	425	450	463	
	IKW	306	306	307	
	CR	405	404	404	
100	Tons	390	411	436	
	IKW	305	304	306	
	CR	406	405	404	

Tons — Cooling Capacity (Tons) IKW — Motor Input Power (Kilowatts) CR — Compressor Model

ADJ LVG COND WATER TEMP (C)		ADJ LVG C	HILLED WATER	TEMP (C)
		5	6	7
33	kW	475	496	510
	IKW	107	109	110
	CR	124	124	124
35	kW	457	450	492
	IKW	109	101	110
	CR	125	124	124
38	kW	411	433	443
	IKW	110	109	110
	CR	127	126	126

19DK55 UNISHELL (700 NOMINAL kW)

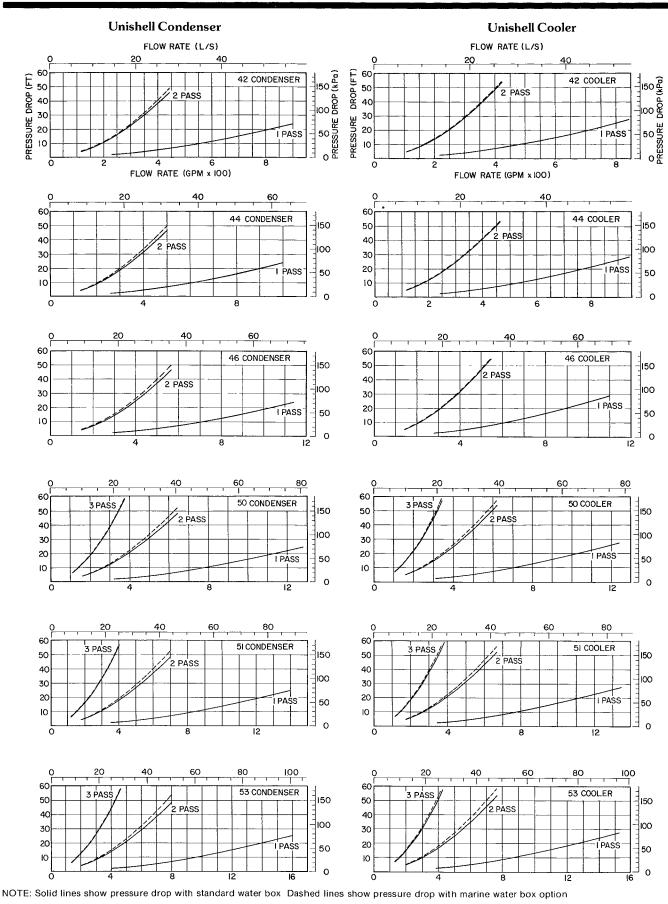
ADJ LVG COND		ADJ LVG CHILLED WATER TEMP (C)		
WATER TEMP (C)		5	6	7
33	kW	714	732	753
	IKW	147	147	148
	CR	174	174	174
35	kW	682	700	728
	IKW	147	146	149
	CR	174	174	174
38	kW	622	651	665
	IKW	149	148	147
	CR	176	175	175

19DK63 UNISHELL (1000 NOMINAL kW)

ADJ LVG COND		ADJ LVG CHILLED WATER TEMP (C)			
WATER	I TEMP (C)	5	6	7	
33	kW	1041	1062	1094	
	IKW	208	207	208	
	CR	284	284	284	
35	kW	978	1000	1052	
	IKW	209	202	208	
	CR	285	284	284	
38	kW	872	911	935	
	IKW	209	207	208	
	CR	287	286	286	

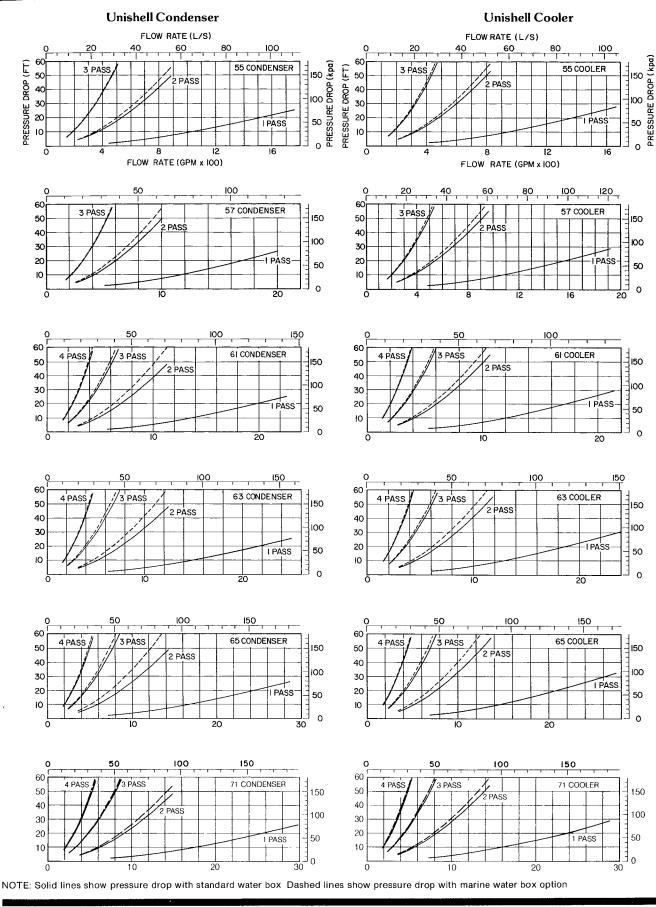
19DK73 UNISHELL (1400 NOMINAL kW)

ADJ LVG COND		ADJ LVG CHILLED WATER TEMP (C)							
WATER	TEMP (C)	5	6	7					
33	kW	1386	1456	1526					
	IKW	271	280	290					
	CR	354	354	354					
35	kW	1358	1400	1484					
	IKW	285	288	292					
	CR	355	355	354					
38	kW	1308	1358	1414					
	IKW	301	307	303					
	CR	356	356	355					


19DK78 UNISHELL (1600 NOMINAL kW)

	G COND	ADJ LVG CHILLED WATER TEMP (C)						
WATER	TEMP (C)	5	6	7				
33	kW	1572	1656	1727				
	IKW	317	329	339				
	CR	405	405	405				
35	kW	1544	1600	1685				
	IKW	335	328	341				
	CR	406	405	405				
38	kW	1445	1512	1586				
	IKW	330	340	338				
	CR	406	406	405				

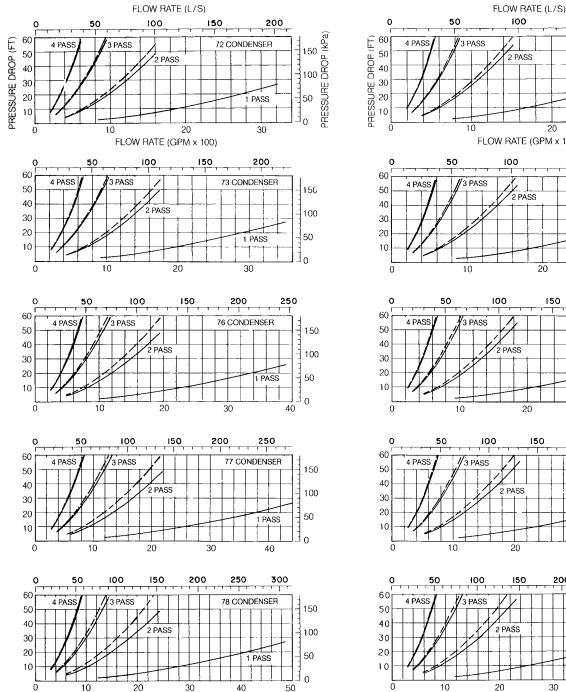
kW — Cooling Capacity (Kilowatts) **IKW** — Motor Input Power (Kilowatts) **CR** — Compressor Model



19DK Hermetic Centrifugal Liquid Chiller

19DK Hermetic Centrifugal Liquid Chiller

 Manufacturer reserves the right to discontinue, or change at any time, specifications or designs without notice and without incurring obligations.


 Book |2
 PC 211
 Catalog No
 521-902
 Printed in U S A
 Form 19DK-1PD
 Pg 9
 6-85
 Replaces: 19DK-PD

 Tab
 5a
 5a
 5a
 5a
 5a
 5a
 5a

19DK Hermetic Centrifugal Liquid Chiller

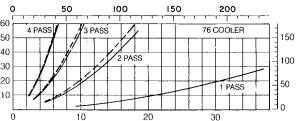
Unishell Condenser

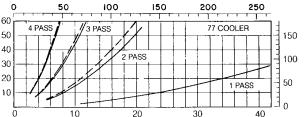
PRESSURE DROP (kPa) 1 PASS 50 0 30 20 FLOW RATE (GPM x 100) 100 150 200 73 COOLER 150 2 PASS 100 1 PASS 50 ٥E 20 30

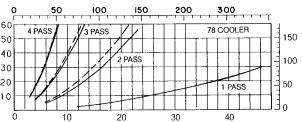
Unishell Cooler

150

72 COOLER


200


150


100

100

2 PASS

NOTE: Solid lines show pressure drop with standard water box Dashed lines show pressure drop with marine water box option

HEATING & COOLIN

19DK Hermetic Centrifugal Liquid Chiller

Electrical data

	мотов					60 HER	TZ MOT	ORS						50 H	ERTZ M	OTORS	3	
MOTOR	ELECTRICAL			Low	Volts	_	r	\square	High	n Volts			Low	Volts			High Vol	ts
MODEE	CHARACTERISTICS	Max IKW	208 v	230 v	380 v	460 v	575 v	Max IKW	2400 v	3300 v	4160 v	Max IKW	230 v	346 v	400 v	Max IKW	3000 v	3300 v
AA	RLA per IKW LRA Star LRA Delta	94	3.19 548 1711	2.89 394 1230	1.75 238 744	1.44 197 615	1.15 161 502	-	_			92	2.89 378 1180	1.92 230 717	1.66 217 678	_		_
АВ	RLA per IKW LRA Star LRA Delta	105	3.23 500 1561	2.92 418 1305	1.77 282 881	1.46 217 678	1.17 177 552	_		-		104	2.92 402 1255	1.94 272 851	1.68 254 794	_		
AC	RLA per IKW LRA Star LRA Delta	115	3.23 567 1771	2.92 498 1556	1.85 331 1033	1.46 249 778	1.17 193 602	-	-			114	3.14 562 1757	1.94 331 1035	1.68 259 808	-		
AD	RLA per IKW LRA Star LRA Delta	129	3.23 692 2161	2.92 530 1657	1.77 316 988	1.46 293 916	1.17 254 793	-	-	_	 	126	2.89 506 1581	1.92 384 1201	1.66 346 1083	_	-	
AE	RLA per IKW LRA Star LRA Delta	144	3.15 720 2251	2.85 667 2083	1.73 369 1155	1.43 333 1042	1.14 273 853	_				143	2.85 578 1807	1.90 406 1268	1.64 356 1111	_	-	
CA	RLA per IKW LRA Star LRA Delta	-		1 1 1	-		-	144	0 286 	0 208 	0 165 					144	0 221	0 201
СВ	RLA per IKW LRA Star LRA Delta	155	3.23 884 2762	2.92 763 2385	1.92 520 1626	1.46 374 1167	1.21 318 994	156	0 277 204	0 201 149	0 160 	153	2.82 795 2485	1.87 545 1702	1.74 480 1501	156	0 221	0 201 150
сс	RLA per IKW LRA Star LRA Delta	171	3.19 1086 3392	3.02 964 3012	1.75 520 1626	1.44 418 1305	1.15 321 1004	172	0 280 226	0 203 164	0 161	169	2.85 771 2410	1.90 593 1852	1.64 462 1443	172	0 221	0 201
CD	RLA per IKW LRA Star LRA Delta	199	3.15 1182 3692	2.85 1012 3163	1.83 676 2112	1.43 486 1519	1.14 405 1265	200	0 273 265	0 199 	0 158	196	2.82 924 2887	1.87 673 2102	1.62 563 1761	200	0 219	0 199
CE	RLA per IKW LRA Star LRA Delta	218	3.30 1451 4533	2.85 1044 3263	1.73 622 1945	1.43 462 1443	1.14 373 1165	219	0 273 284	0 199	0 158	214	2.85 1165 3640	1.90 780 2436	1.64 665 2078	219	0 219	0 199
CL	RLA per IKW LRA Star LRA Delta	242	3.15 1326 4143	2.85 1173 3665	1.73 749 2340	1.43 546 1707	1.14 398 1245	243	0 277	0 201	0 160	237	2.82 1197 3740	1.87 812 2536	1.62 721 2252	243	0 219	0 199
СМ	RLA per IKW LRA Star LRA Delta	265	3 19 1403 4383	2.89 1422 4443	1.75 841 2628	1.44 562 1757	1.15 498 1556	267	0 273 	0 199 257	0 158	261	2.79 1542 4819	1.85 833 2603	1.60 730 2280	267	0 219	0 199
CN	RLA per IKW LRA Star LRA Delta	292	3.15 1710 5344	2.85 1333 4167	1.73 865 2704	1.43 663 2071	1.14 610 1908	295	0 273 	0 199	0 158	289	2.79 1446 4518	1.85 854 2670	1.70 896 2800	295	0 219	0 199
СР	RLA per IKW LRA Star LRA Delta	320	3.12 1671 5223	2.82 1430 4468	1.71 851 2659	1.41 719 2247	1.13 601 1878	323	0 273	0 199	0 158	317	2.82 1534 4794	1.87 1020 3187	1.62 951 2973	323	0 219 	0 199
cq	RLA per IKW LRA Star LRA Delta	356	3.15 1989 6214	2.85 1639 5121	1.73 948 2963	1.43 1000 3125	1.14 672 2098	360	0 277	0 201 345	0 160	352	2.79 1542 4819	1.96 1303 4071	1.60 951 2973	360	0 219 351	0 199

LEGEND

IKW	 Compressor	Power	Input	(Kilowatts)

LRA — Locked Rotor Amps OLTA — Overload Trip Amps (= RLA x 1 08) RLA — Rated Load Amps

NOTES: 1 Standard Voltages:

Volt	For Use on Supply Voltages — 60 Hz	Volt	For Use on Supply Voltages — 50 Hz
208	200 to 208v systems	230	220 to 240v systems
230	220 to 240v systems	346	320 to 360v systems
380	360 to 400v systems	400	380 to 415v systems
460	440 to 480v systems	3000	2900 to 3100v systems
575	550 to 600v systems	3300	3200 to 3400v systems
2400	2300 to 2500v systems		,
3300	3150 to 3450v systems		
4160	4000 to 4300v systems		

2 To establish electrical data for your selected voltage, if other than listed voltage, use the following formula:

	RLA	= listed BLA	x	listed voltage
nLA		- Noted HEA		selected voltage
		= listed OLTA	v	listed voltage
	OLIA	- IIsteu OLTA	^	selected voltage
	LRA	= listed LRA	x	selected voltage
	LUA		^	listed voltage
	EVANA	DI E. Eind the se	4	the set of a set of a set of the

EXAMPLE: Find the rated load amperage for a motor listed at 1 14 amps per kW input and 550 volts

$$RLA = 1.14 \times \frac{575}{550} = 1.19$$

ITEM	RATING HP	DESIGN CENTER VOLTAGE	SUPPLY V-PH-HZ	RLA	LRA
OIL PUMP 19DK	1/2 1/2 1/2 1/2 1/2	230 410 220 460 575	220/240-3-50 380/440-3-50 200/240-3-60 440/480-3-60 550/600-3-60	2 04 1 0 1 8 95 .76	60 60 130 65 4.73
PURGE PUMP 19DK	-	_	115-1-50/60	44	_

Control Transformer Requirements*

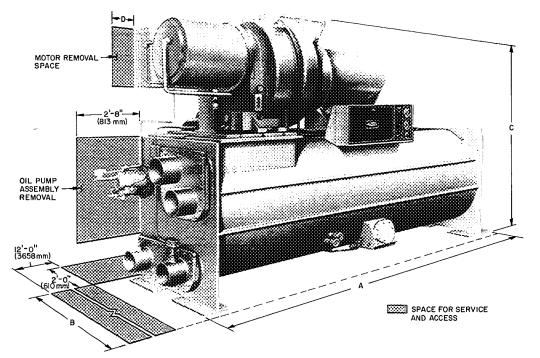
MODEL 19	DK
Control Circuit Inrush va Sealed va	4630 1540
Oil Heater Inrush va Sealed va	1000

*15-amp lighting circuit can be used instead of transformer NOTES

115-volt control supply requirements listed above provide for ESP options, 3 pilot relays, one 1CR relay and the purge unit Oil heater must be on separate circuit providing con-

2 tinuous service

Compressor motor controllers


Compressor motors as well as controls and accessories require the use of starting equipment systems specifically designed for 19 Series chillers. Refer to Application Data, Starting Equip-ment publications or consult Carrier regarding design information for selection of controllers

Capacitors/power factors

Power factor considerations may indicate use of capacitors. Properly sized capacitors improve power factors especially at part load Contact Syracuse for further information on power factors.

Dimensions

Recommended clearance: Allow 2'-0" (610 mm) minimum vertical and horizontal clearance

Certified Dimension Drawings available on request

Typical Isolation Assemblies (Without Spring Mounts) Ø <u>@</u>@ Ø Ø TUBE SHEET SUPPORT PLATE STANDARD ELASTOMERIC PAD JACKING SCREW(S) OPTIONAL SOLEPLATE PACKAGE SOLEPLATE LEVELING PAD(S)

Service Clearance for motors	Service	Clearance	for Motors
------------------------------	---------	-----------	------------

DESIGN CENTER		SIZE			ANCE
VOLTAGES	Unishell	Compressor	Motor	ft-in.	mm
	42 through 65	112 through 168	AA through AE	1-11	585
208,230,346, 380,400,	50 through 78	172 through 258	AE	1 1-11	565
460,575	50 through 78	172 through 256	CB through CL	2-1	005
,	61 through 78	282 through 408	CD through CQ	2-1	635
2400,3000,	50 through 78	172 through 258	CA through CL		005
3300,4160	61 through 78	282 through 408	CD through CQ	2-1	635

NOTE: Service access should be provided per ANSI Standard B9 1, NFPA 70 (NEC) and local safety codes Clear space adequate for inspection, servicing and rigging of all major components of the chiller is required

INISHELL			DIMEN	SIONS						NOZZL	E SIZE (in	.)		
SIZES	Leng	th* A	Wid	th B	Heig	ht C		Cooler Passes			Condenser Passes			
19DK	ft-in.	mm	ft-in.	mm	ft-in.	mm	1	2	3	4	1	2	3	4
42,44,46	14-4	4369	3-8	1118	6-5	1956	6	4		_	8	6		
50,51,53, 55,57	14-4	4369	3-8	1118	6-11	2108	8	6	6	_	8	6	4	
61,63,65	14-4	4369	4-6	1372	8-1	2464	8	6	6	6	10	8	6	6
71,72,73	14-4	4369	5-0	1524	8-10	2692	10	8	8	6	10	8	6	6
76,77,78	14-6	4420	5-0	1524	8-10	2692	12	8	8	6	12	10	8	6

PC 211

Book 2

Tab 5a

Physical data

Comp	ressor Weights*						
COMPRESSOR SIZE	ASSEMBLY (Less Motor)						
	lb	kg					
112 — 168 172 — 258 282 — 408	1460 2060 2910	662 934 1320					

*Net weights may vary from those listed by $\pm 5\%$ depending upon casting process. For total compressor weight, add applicable motor weight (see Motor Weight table)

Motor Compressor Combinations

MOTOR SIZE	USED WITH COMPRESSOR
AA through AD	112 through 168
AE	112 through 258
CA through CL	172 through 258
CD through CQ	282 through 408

	Motor Weights*							
				FOR GHT	MOTOR END BELL			
JIEL	lb	kg	lb	kg	lb	kg		
AA AB AC	520 530 540	236 240 245	110 115 120	50 52 54	70	32		
AD AE CA	580 610 920	263 277 417	130 140 170	59 64 77	70 70 90	32 32 41		
CB CC CD	940 980 1020	426 445 463	170 180 190	77 82 86	90	41		
CE CL CM	1060 1100 1130	481 499 513	200 210 220	91 95 100	90	41		
CN CP CQ	1190 1210 1240	540 549 562	230 230 240	104 104 109	90	41		

*Listed weights are for low-voltage (200 through 600-v) motors To calculate the weight of high-voltage motors, add 200 lb (91 kg) to size CA through CD total weight, and add 150 lb (68 kg) to size CE through CQ total weight

Machine and Heat Exchanger Weights

UNISHELL		MAC			CHARGE EXCHANGER COVER									
SIZE	Opera	ating	Rigg	jing	Refrig	erant*	Wat	ter	WEIC	GHT	Cod	ler	Cond	enser
	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg
42 44 46	9,136 9,281 9,446	4 144 4 210 4 285	8,276 8,376 8,476	3 754 3 799 3 845	500 525 550	227 238 249	360 380 420	163 172 191	6,126 6,206 6,326	2 779 2 815 2 869	53	24	76	34
50 51 53 55 57	10,961 11,191 11,456 11,716 11,971	4 972 5 076 5 196 5 314 5 430	9,856 10,056 10,256 10,456 10,656	4 471 4 561 4 652 4 743 4 833	575 575 600 625 625	261 261 272 283 283	530 560 600 635 690	240 254 272 288 313	6,556 6,756 6,956 7,156 7,356	2 974 3 064 3 155 3 246 3 337	73	33	76	34
61 63 65	15,412 15,792 16,122	6 990 7 163 7 312	13,652 13,952 14,152	6 192 6 328 6 419	775 810 850	352 367 386	985 1,030 1,120	447 467 508	9,352 9,602 9,852	4 242 4,355 4 468	123	56	137	62
71 72 73 76 77 78	17,693 17,953 18,338 19,078 19,648 20,108	8 025 8 143 8 318 8 653 8 912 9 121	15,578 15,778 16,078 16,578 17,978 17,278	7 066 7 157 7 293 7 519 7 701 7 837	975 985 1,010 1,100 1,150 1,200	442 447 458 499 522 544	1,140 1,190 1,250 1,400 1,520 1,630	517 540 567 635 689 739	11,278 11,478 11,678 12,348 12,698 13,058	5 115 5 206 5 297 5 601 5 760 5 923	138 138 138 208 208 208 208	63 63 63 94 94 94	137 137 137 268 268 268 268	62 62 122 122 122

*Refrigerant Charge — The refrigerant weight listed is the charge required for optimum machine performance at nominal conditions of 44 F (7 C) leaving chilled water, 95 F (35 C) leaving condenser water and maximum machine tons The amount of refrigerant shipped with the machine exceeds the amount required at these conditions. Therefore, do not charge the full quantity without observing machine performance to determine the exact amount needed

_∦ ∖∦

Application data

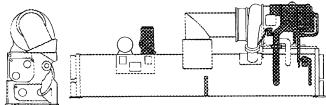
Range of application

The 19DK refrigeration machine is designed for standard water chilling applications using Refrigerant-11.

ASME stamping

All 19DK heat exchangers are constructed in accordance with the ANSI/ASHRAE 15-1978 Safety Code for Mechanical Refrigeration. This code, in turn, requires conformance with the ASME Code for Unfired Pressure Vessels wherever applicable

The heat exchangers have water-side volumes less than 120 gallons (454 L), and refrigerant-side design pressures of not more than 15 psig (103 kPa). The unit is, therefore, exempt from the ASME code requirements and is not stamped.


Design pressures

Design and test pressures for 19DK unishell heat exchangers are listed below.

Design	and	Test	Pressures
--------	-----	------	-----------

PRESSURES		L SIDE gerant)	TUBE SIDE (Water)		
	psi	kPa	psi	kPa	
Design	15	103	150	1034	
Hydrostatic Test			225	1551	
Air Test	30	207			

ITEM	MATERIAL	SPECIFICATION
Shell Water Box Shell Water Box Flange Water Box Cover Tube Sheet Tube Support Sheet	HR Steel	ASME SA285 Grade C
Tubes	Finned Copper	ASME SB359

STANDARD FACTORY INSULATION

EXTRA AVAILABLE FACTORY INSULATION

Insul	ation	Rea	uirer	nents
mour	unon	IIC Y	unci	nones

	EXTRA INSULATION				
UNISHELL SIZE	ft²	m²			
42-57	130	12 08			
61-65	213	19 79			
71-78	218	20.25			

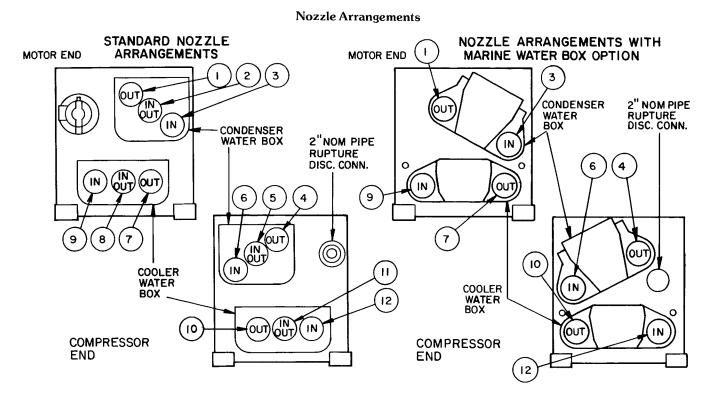
Insulation

Standard insulation — The compressor motor and purge condensing chamber are factory insulated The insulation applied at the factory is 3/4 in. (19.0 mm) thick and has a thermal conductivity K value of 0.28 Btu \cdot in./hr \cdot ft² \cdot °F (0.0404 W/m \cdot °C). Insulation conforms with UL Standard 94. Classification 94HBF.

Additional factory insulation (when ordered) — The suction elbow and the evaporator portion of the unishell are factory insulated if specified.

Insulation at jobsite — As indicated in Condensation vs Relative Humidity table, the factory insulation provides excellent protection against condensation under most operating conditions. If temperatures in the equipment area exceed the maximum design conditions, extra insulation is recommended and is available at customer request as shown in Insulation Requirements table.

If the cooler and the suction elbow are to be field insulated, obtain the approximate areas from Insulation drawing.


Insulation of water box covers is made only in the field and this area is not included in Insulation table When insulating the covers, allow for service access and removal of covers.

	ROOM DRY-BULB TEMP							
AMOUNT OF CONDENSATION	80 F	(27 C)	90 F	(32 C)	100 F	(38 C)		
	%Relative Humidity							
None		80		76		70		
Slight	87		84		77			
Extensive		94	91		84			

*These approximate figures are based on 35 F (1 7 C) saturated suction temperature A 2 F (1 1 C) change in saturated suction temperature changes the relative humidity values by 1% in the same direction

Application data (cont)

N	COOLER NOZZLE NO.						
Pass	in	Out					
1*	11	8	P				
	8	11	Q				
2	12	10	R				
	9	7	S				
3	12	7	T				
	9	10	U				
4†	12	10	H				
	9	7	J				

ŀ

CONDENSER NOZZLE NO.			ARR
Pass			
1*	25	5 2	W X
2	6	4	A
	3	1	B
3	3	4	C
	6	1	D
4†	6	4	E
	3	1	F

*1-pass not available for marine water box option †4-pass available on 61 through 78 Size unishells only Complete nozzle arrangement consists of the cooler arrangement followed by the condenser arrangement For example:

= arr R
= arr X
= RX

Vent and drain connections — With the exception of the cooler vent connection, located in the water box shell, all vent and drain connections are found in the water box covers. Connection size is 3/4-in. FPT.

Provide high points of the machine piping system with vents and the low points with drains. If shutoff valves are provided in the main water pipes near the unit, a minimum amount of system water is lost when the heat exchangers are drained. This reduces the time required for drainage and saves on the cost of re-treating the system water.

It is recommended that pressure gages be provided at points of entering and leaving water to measure pressure drop through the heat exchanger. Gages may be installed as shown in Pressure Gage Location table. Pressure gages installed at the vent and drain connections do not include nozzle pressure losses. Use a reliable manometer to measure pressure differential when determining water flow. Regular gages are insensitive and do not provide accurate measurement of flow conditions.

Pressure	Gage	Location
----------	------	----------

NUMBER OF PASSES	GAGE LOCATION (Cooler or Condenser)		
1 and 3	One gage in each water box		
2 and 4	Two gages in water box with nozzles		

Oil cooler water supply — City water or system chilled water may be used. If city water is used, it must be clean and noncorrosive. Water-side erosion or corrosion of the oil cooler coil can lead to extensive machine damage not covered by the standard warranty.

In addition to being clean and noncorrosive, oil cooler water must meet the following requirements:

Application data (cont)

Max inlet temperature 85 F (29 C) Max inlet working pressure 200 psi (1379 kPa) Velocity in tube, fps (m/s) 10 max — 6 min (3.0 max - 1.8 min) Flow, gpm (L/s) 7 max — 4 min (26.5 max - 15.1 min) Pressure drop, psi (kPa) diff 5 max — 2 min (34.5 max - 13.8 min)

A factory-supplied solenoid valve and a 1/2-in FPT plug valve are provided at the oil cooler water inlet. The plug valve permits manual regulation of oil cooler water flow for close control of oil temperature. The solenoid valve permits the start and stop of oil cooler water flow.

If chilled water is used as the oil cooling medium, it enters oil cooler from the entering water of machine cooler, and drains from oil cooler into the leaving water of machine cooler. Place drain connection downstream from chilled water control element so that oil cooler water does not affect temperature readings.

If machine has a single-pass cooler, it is advisable to pipe oil cooler drain into suction side of the chilled water pump to ensure adequate pressure drop through the oil cooler.

Thermometers

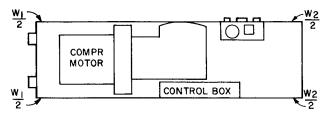
The 19DK has thermowells provided for use in measuring refrigerant temperature. One well is located in the high temperature side (condenser), and one in the flash subcooler drain.

Thermometers (field supplied) should have a temperature range of 0° F to 200 F (-18 C to 93 C).

Thermometers for measuring chilled water and condensing water temperatures are field purchased, as required, for individual jobs. It is recommended that thermometer wells be provided in cooler and condenser water piping. Wells in the leaving water pipes should be 6 to 10 pipe diameters from the water boxes. This provides sufficient distance for complete mixing of water as it leaves the heat exchanger tubes. Extend thermometers into pipe at least 2 inches (51 mm).

Relief devices

19DK machines are furnished with a rupture disc assembly. In accordance with ASME requirements, the rupture disc is certified to burst within 5% of design bursting pressure. If local codes require other relief devices such as relief valves, they must be furnished in the field. The total volume of the unishell (cooler and condenser together) has been taken into account in sizing the rupture disc assembly since the cooler is not isolated from the condenser.


See table below for the maximum allowable equivalent length of discharge pipe from rupture disc to atmosphere. Do not use pipe sizes smaller than the rupture disc exit fitting.

Vent relief device to outdoors in accordance with the ANSI safety code and all other codes applicable to mechanical refrigeration. *Refrigerant discharged from a safety device can displace oxygen in closed spaces and cause asphysiation.*

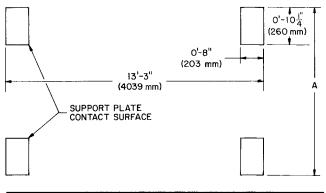
Refrigeration log

The Carrier log sheet provides a convenient check list for routine maintenance and forms a continuing record of machine performance. It is an aid in scheduling maintenance and in diagnosing machine problems. The log sheet for 19 Series machines is available from Carrier.

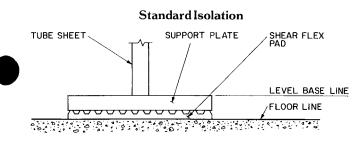
Operating Weight Distribution

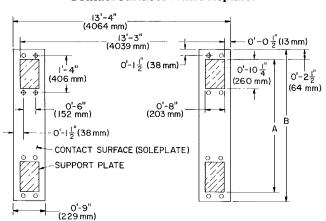
	TOTAL OPER		WEIGHT DISTRIBUTION*			
	WEIGHT		W1 W2			/2
	lb	kg	lb	kg	lb	kg
42 44 46	9,136 9,281 9,446	4 144 4 210 4 285	4,928 5,128 5,328	2 235 2 326 2 417	4,208 4,153 4,118	1 909 1 884 1 868
50 51 53 55 57	10,961 11,191 11,456 11,716 11,971	4 972 5 076 5 196 5 314 5 430	6,168 6,373 6,518 6,663 6,813	2 798 2 891 2 956 3 022 3 090	4,793 4,818 4,938 5,053 5,158	2 174 2 185 2 240 2 292 2 340
61 63 65	15,412 15,792 16,122	6 990 7 163 7 312	8,791 8,996 9,186	3 988 4 081 4 167	6,621 6,796 6,936	3 002 3 082 3 145
71 72 73 76 77 78	17,693 17,953 18,338 19,078 19,648 20,108	8 025 8 143 8 318 8 653 8 912 9 121	10,104 10,249 10,469 10,789 11,069 11,389	4 583 4 649 4 749 4 894 5 021 5 166	7,589 7,704 8,869 8,289 8,580 8,580 8,719	3 442 3 494 3 569 3 760 3 891 3 955

*W1 is the weight resting on the compressor motor end support plates W2 is the weight resting on the support plates at the end opposite the compressor motor


Maximum Allowable Equivalent Length of Discharge Pipe

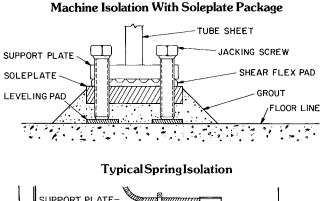
UNISHELL RUPTURE DISC SIZE NOMINAL SIZE	REQUIRED AIR DISCHARGE		SCHEDULE 40 PIPE SIZE (in.)						
				2		3		4	
	САРА	CITY	Maximum Allowable Equivalent Pipe Length						
	lb/min	kg/min	ft	m	ft	m	ft	m	
42 — 57	2	38 6	17 5	12	3 66	100	30 5	390	118 9
61 — 65	3	50 5	22 9	8	2 4 4	59	18 0	238	72 5
71 — 78	3	58 5	26 5	6	1 83	44	13 4	170	51 8

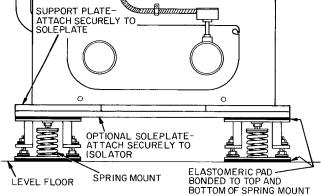

Application data (cont)



UNISHELL SIZE*	DIMENSION A	SION A
UNISHELL SIZE	ft-in. mi	
42 — 57	3-0	914
61 — 65	3-10	1168
66 — 78	4-6½	1384

*See machine informative plate





Contact Surfaces With Soleplates

UNISHELL SIZE*	DIMENSIONS						
		۹	В				
	ft-in.	mm	ft-in	mm			
42 57	3-0	914	3-5	1041			
61 — 65	3-10	1168	4-3	1295			
<u>66 — 78</u>	4-61/2	1384	4-11½	1511			

*See machine informative plate

Standard isolation — All 19DK machines are supplied with 4 elastomeric pads of resilient cross-ribbed neoprene and 4 steel support plates that provide vibration isolation.

Optional isolation — When ordered, a soleplate package, containing 2 soleplates, 16 leveling pads and jacking screws, is shipped with the unit. The package is used in conjunction with the standard isolation.

Spring isolation — Certain critical machine locations may require a greater degree of vibration isolation than that provided by standard arrangements. Generally, spring isolation mounts are used in such situations. When required, mounts are field selected for the desired degree of isolation and are furnished and installed by others.

While spring isolators may be placed directly under the support plates, soleplates provide a broader support base, increase unit stability, and decrease the natural (bounding) frequency of the unit. For individual spring loadings, divide W1 and W2 by 2 (see Operating Weight Distribution table).

When applying isolators, securely fasten soleplates to the heat exchanger. If bolts are used for this purpose, drill or tap soleplates, as required, in the field.

Spring isolation requires that special consideration be given to the support and isolation of the system piping Refer to Carrier System Design Manual for general system piping information. Also, contact an experienced, responsible local organization for detailed information on a specific installation.

 Manufacturer reserves the right to discontinue, or change at any time, specifications or designs without notice and without incurring obligations

 Book 2
 PC 211
 Catalog No 521-902
 Printed in U S A
 Form 19DK-1PD
 Pg 17
 6-85
 Replaces: 19DK-PD

 Tab
 5a
 Form 19DK-1PD
 Fo

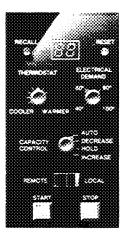
Basic microprocessor controls

Purpose: To provide the safety, interlock, capacity control and indications necessary to operate the chiller in a safe and efficient manner

Basic Microprocessor Control Panel

Control system — The microprocessor control on each Carrier centrifugal chiller is factory mounted, wired and tested to assure machine protection and efficient capacity control In addition, the program logic assures proper starting, stopping and recycling of the machine.

The capacity control system is fully automatic, using the microprocessor for precise control of machine capacity at optimized efficiency for all load conditions.


The operating capacity of each chiller is matched directly with the need for cooling As cooling needs change, guide vanes in the refrigerant vapor stream entering the compressor change position to maintain the selected chilled water (brine) temperature.

The changes in vane position are initiated by a thermistor located in the leaving chilled water nozzle This probe constantly relays any variations in water temperature to the microprocessor. The microprocessor causes the guide vane actuator to adjust the guide vane position as required.

If the chilled water temperature drops below the selected design temperature by more than the dead band (adjustable ± 0.5 to ± 1.0 degrees F, ± 0.27 to ± 0.54 degrees C), the guide vane actuator moves the guide vanes toward a closed position; the rate of refrigerant evaporation slows and chiller capacity decreases. A rise in chilled water temperature above the set point causes the actuator to move the vanes toward a more open position. Refrigerant begins to evaporate at a more rapid rate and chiller capacity increases.

Built-in overrides in the capacity control system prevent motor overload. When motor full load current is reached, the guide vanes stop opening immediately. If motor current continues to increase, the guide vanes begin to close until motor current is reduced.

To minimize start-up current demand, the soft loading feature is employed. This feature loads the machine/ motor in a pre-programmed, gradual manner. This prevents any costly power demand spikes which might otherwise occur during initial loop pull down.

Close-Up View of Basic Microprocessor Control Panel

Equipment self-diagnostic check

It is recommended that, at initial start-up, the chiller self-diagnostic check be executed. The control panel must be placed in local mode. The moment power is applied to the control it is in an initialization mode for the first 2 minutes. Any time during this initial 2-minute period, or within 2 minutes after a power-on-reset (POR), the RESET button (located on the face of the panel) may be depressed. This action puts the equipment into the self-diagnostic check, which consists of 34 tests. (Details of this test are available in the product Application Data, available from your Carrier salesperson.)

After the tests have been completed, depress the POR button again and the machine is now ready to start.

Features

Safety Cutouts:

Bearing High Temperature Motor High Temperature* Refrigerant (Condenser) High Pressure Refrigerant (Cooler) Low Temperature* Lube Oil Low Pressure Compressor (Refrigerant) Discharge Temperature Under Voltage Over Voltage Oil Pump Motor Overload Cooler and Condenser Water Flow† Motor Overload Motor Acceleration Time Intermittent Power Loss

Capacity Control:

Leaving Chilled Water Control* Guide Vane Actuator Module Manual — Power (Demand) Limiter Manual — Chilled Water Reset

Interlocks:

Manual/Automatic Remote Start

Starting/Stopping Sequence

- Pre-Lube/Post-Lube
- Pre-Flow/Post-Flow

- Compressor Starter Interlock
- Soft Loading Interlock
- Oil Cooler Water Flow Solenoid

Current Limiter* Pre-Start Check of Sensors Status Low Chilled Water (Load) Recycle Monitor-Number Compressor Starts Manual Reset of Safeties Purge Malfunction Override

Indication:

Chiller Operating Status Power-on Pre-Start Diagnostic Check Compressor Motor Amps Pre-Alarm*‡ Alarm Contact for Remote Alarm Safety Shutdown Code Elapsed Time (Hours of Operation)

*Override protection: Causes compressor to first unload automatically and then, if necessary, shutdown. †Required: Field or factory supplied (installed at jobsite). ‡By display code only.

ESP — expanded services panel

Purpose: To enhance the operation capabilities of the chiller and satisfy several requirements demanded by the industry.

The ESP can be mounted in the machine control panel, or remotely, as the owner sees fit. It provides:

Remote indication:

- Chiller operating status
- Shutdown codes
- Key operating parameters
- Self-diagnostics

Keypad Programming capabilities of:

Leaving chilled water temperature

Reset of chilled water temperature from:

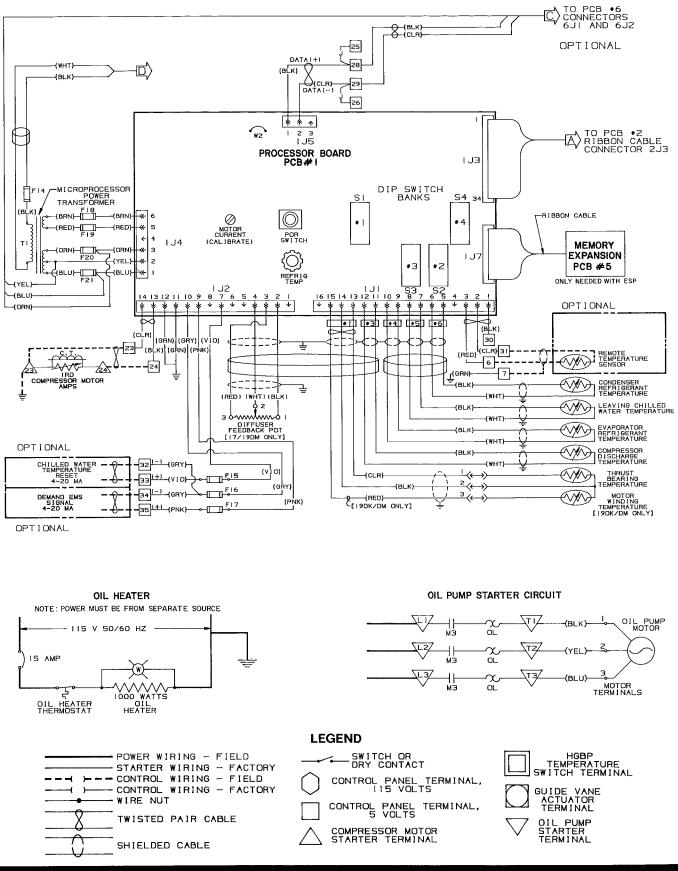
- Return chilled water temperature (maintains constant return chilled water temperature)
- EMS, building management system, (4-20 mA) or (1-5 Vdc)
- Remote temperature (i.e., outside air, supply air)
- Load on chiller

Power demand limit

Reset of power demand limit from:

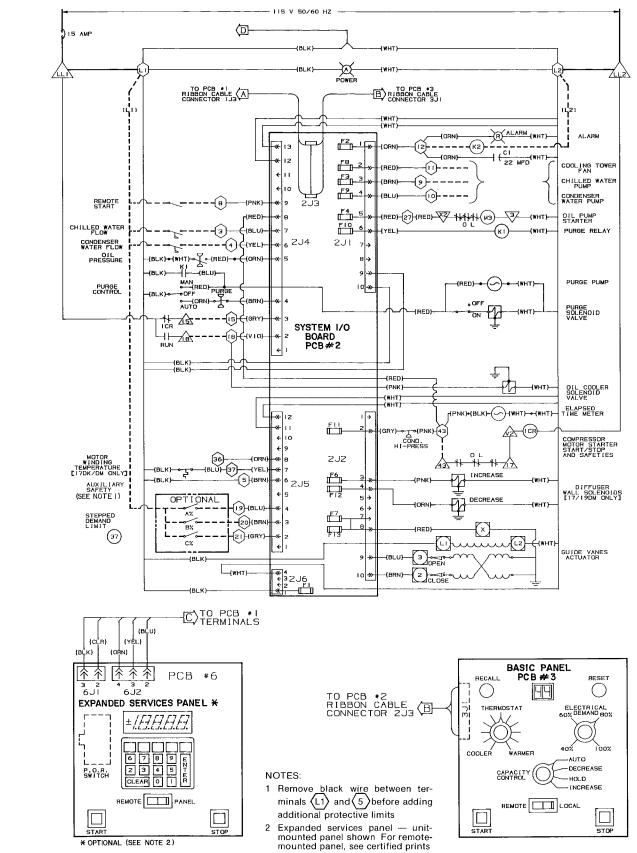
- Stepped-position contact closure (80/60/40% selectable)
- EMS, building management system; (4-20 mA) or (1-5 Vdc)

Lead-lag operation and control



Expanded Services Panel

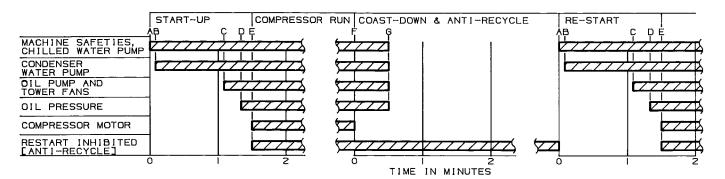
Typical schematic


 Manufacturer reserves the right to discontinue, or change at any time, specifications or designs without notice and without incurring obligations

 Book | 2
 PC 211
 Catalog No 521-902
 Printed in U S A
 Form 19DK-1PD
 Pg 20
 6-85
 Replaces: 19DK-PD

 Tab
 5a

Typical schematic (cont)


 Manufacturer reserves the right to discontinue, or change at any time, specifications or designs without notice and without incurring obligations

 Book |2
 PC 211
 Catalog No 521-902
 Printed in U S A
 Form 19DK-1PD
 Pg 21
 6-85
 Replaces: 19DK-PD

 Tab
 5a
 5a

Control sequence

- START INITIATED, SAFETIES CHECKED CHILLED WATER PUMP STARTED Α
- в =
- С =
- CHILLED WATER PUMP STARTED CONDENSER WATER PUMP STARTED [5 SEC. AFTER A] CONTROLLER VERIFIES WATER FLOW. TOWER FANS AND OIL PUMP STARTED. [MINIMUM | MINUTE-MAXIMUM 5 MINUTES AFTER B] OIL PRESSURE VERIFIED [WITHIN 15 SEC. AFTER C]
- D

To start: Push Start Button — Start initiated; all safeties are checked to see that they are satisfied (if one is not, an indication of the fault will be displayed and the start aborted). The signal is sent to start chilled water pump.

After 5 seconds, the signal is sent to start the condenser water pump and the tower fans.

The microprocessor then puts the start on hold It checks that water flows are established. If satisfied, it will send the signal to start the oil pump If not satisfied, it will continue to monitor water flows for a maximum of 5 minutes. If water flows are established within the 5 minutes, the microprocessor will send the signal to start the oil pump; if not, it will abort the start and give an indication of the reason.

Ten seconds after oil pressure is satisfied, the microprocessor sends a signal to the starter to start the compressor motor. If oil pressure is not satisfied, it will again abort the start and give an indication of the reason.

Guide specifications

Performance — Chillers shall be selected to meet performance requirements as indicated in the equipment schedule.

Chiller performance shall be rated in accordance with the latest edition of ARI Standard 550.

Full load operation of the motor shall not exceed nameplate ratings. Electrical power shall be supplied to the machine at the voltage, phase and hertz listed in the equipment schedule.

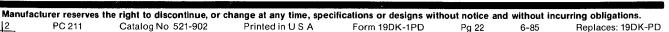
Chiller shall consist of motor, compressor, lube system. cooler, condenser, factory-assembled purge unit, isolation and microprocessor control. An initial charge of refrigerant and oil shall be furnished.

- E = COMPRESSOR STARTS [10 SEC. AFTER D]
- F = SHUT-DOWN INITIATED, COMPRESSOR STOPS.
- OIL PUMP, EVAPORATOR & CONDENSER PUMPS AND TOWER FAN DE-ENERGIZED, EXCEPT WHEN STARTER CONTACTS WELDED [30 SEC. AFTER F TO A [START TO START] = 15 MINUTES MINIMUM G
- F] F
- F TO A [STOP TO START] = 3 MINUTES MINIMUM

Once started the microprocessor initializes the primary restart protection (15 minutes — start to start). It monitors the motor acceleration time and if it is excessive, aborts the start. If the starter fails to transition again, the start is aborted. Once the starter transitions, it goes into its capacity control mode.

To stop: Push Stop Button — Signal sent to de-energize compressor motor.

The microprocessor ensures that the power to the compressor motor is off, and after 30 seconds sends signals to de-energize the oil pump, the chilled water and condenser water pumps and the tower fan. (If for some reason the power to the compressor motor remained on, the auxiliaries would be kept running.)


The microprocessor then initializes the secondary restart protection (3 minutes — stop to start), logs the reason for the stop into memory (if it was a safety shutdown) and recycles itself to be ready for the next start.

The chillers shall be shipped factory assembled with all refrigerant piping and control wiring factory installed.

If chillers using higher pressure refrigerant than R-11 are submitted, a refrigerant pumpout system shall be installed including refrigerant storage vessel (external to unit shells) sufficient to hold entire charge; pumpdown compressor and drive; piping; wiring; and starter. For multiple units, a single pumpout system of sufficient capacity for the largest unit may be used.

Machines operating on R-11 shall be charged at jobsite.

Refrigerant flow control shall be by means of a positive metering device either float or pressure operated.

Guide specifications (cont)

Chillers shall bear permanently attached metal plates that state name of manufacturer, chiller unit model number, compressor type, and refrigerant used

Compressor shall be of high performance single-stage hermetic design. Motor, transmission, and compressor shall be hermetically sealed into a common assembly, and arranged for easy servicing. Babbit-lined journal bearings shall be pressure lubricated.

Compressor transmission gears shall be of the doublehelical type and must be arranged for visual inspection without disassembly or removal of compressor casing or impeller. Motor stator shall be arranged for service with only minor compressor disassembly and without requiring the breaking of main refrigerant piping connections. Impellers shall be over-speed tested by manufacturer to a minimum of 20% above operating conditions.

Compressor shall be provided with a factory-installed lubrication system to deliver oil under pressure to bearings and gears. System shall be complete with hermetic motor-driven oil pump, oil cooler, pressure regulator, oil filter, oil pump starter, automatic water control valve, thermostatically controlled oil heater, and reservoir oil temperature gage. Oil pump shall be energized prior to chiller motor energization. Oil pump starter shall be factory supplied and mounted on the chiller and factory wired with only field power leads required. Oil pump controls to have delayed action so that oil pressure is provided during machine coastdown. Oil pump is to be provided with a separate 460-, 220- or 575-volt, 3-phase, 60-Hz power source (230- or 410-volts, 3-phase, 50-Hz power source). When oil pump starters are not factory mounted, all required extra field mounting and wiring is to be done at no cost to the owner.

Oil pump shall have momentary switches to permit manual operation of the pump when the compressor is not operating.

Compressor motor shall be of the single-speed, nonreversing squirrel cage induction type and shall be suitable for voltage as shown on the equipment schedule The design speed shall be 3550 rpm at 60 Hz (or 2950 rpm at 50 Hz). The motor shall be suitable for operating in a refrigerant atmosphere. Compressor motor to be cooled by atomized subcooled refrigerant in contact with the motor windings. Motor stator shall be arranged for service or removal without complete compressor disassembly or breaking of main refrigerant piping connections Full load operation of the motor shall not exceed nameplate rating. Low-voltage motors shall be built for connection to Star-Delta type reduced inrush starter.

Cooler and condenser shall be of unishell (single vessel) construction, fabricated with high performance finned copper tubing rolled into tube sheets and individually replaceable, provided with water boxes having drains and vents with covers to permit tube cleaning within the space shown on the drawings.

Water box and nozzle connections shall be designed for 150 psig (1034 kpag) maximum working pressure, unless otherwise noted.

When the water side will contain water of 120 gallons (454 L) or more (including tubes and both water boxes), the vessel shall display an ASME nameplate which shows pressure and temperature data and the "U" stamp for Section VIII, Division 1.

Suitable tapping shall be provided in water boxes and nozzles for control sensor, gages and thermometers.

High efficiency, externally finned and internally enhanced tubing shall be .028 in. (22 gage) (0.71 mm) wall thickness measured at the root of the fins.

Evaporator shall be of such design to prevent liquid refrigerant from entering the compressor Devices that introduce pressure losses (such as eliminators) are not acceptable; these devices are subject to structural failures resulting in compressor damage requiring extensive repair.

Tubes shall be removable from either end of the heat exchanger without affecting strength and durability of the tube sheet and without causing leakage at adjacent tubes

An economizer shall be provided as part of the assembly to increase cycle efficiency.

Purge systems shall be furnished for chillers operating under vacuum where ambient temperature is 75 F (24 C).

System shall be self-contained thermal type and provided with necessary devices for evacuating air and water vapor from the system and for condensing, separating and returning refrigerant to the system.

Controls shall be electronic microprocessor and fully automatic.

Control system shall provide shutdown for motor overcurrent, over voltage, under voltage, bearing high temperature, low refrigerant temperature, high condenser pressure, high motor temperature, high compressor discharge temperature, and low oil pressure. Each of these controls shall have manual reset feature and cause an alarm indication.

Controls shall provide override condition to automatically reduce load on chiller in the event of high motor temperature and low refrigerant temperature and cause a pre-alarm indication. If condition persists, then the control will shut down the machine.

Controls shall provide low chilled water temperature shutdown with automatic recycling to provide freeze protection at low load.

Capacity control shall be by means of variable inlet guide vanes located in compressor section Load modulation shall be from 100% to 10% full load under normal ARI conditions.

Guide specifications (cont)

Factory-furnished controls shall be pre-wired and pre-piped with connections to a terminal strip for convenience where interlocks to other equipment will be field connected.

Microprocessor system shall include a programmed sequence to meet pre-lube and post-lube, pre-flow and post-flow needs prior to start and during coastdown after machine stop, and to prevent restart until after a safe preset time. When started, the programmed soft load feature is employed to assure smooth pull down of loop temperature to prevent any power demand spikes.

Indication of elapsed time, compressor motor amps, pre-alarm and alarm, power on, failure mode and record of 5 past failure modes, plus a self-diagnostic routine shall be available

Common controls (options available when specifying the Expanded Services Panel [ESP]).

Remote set point shall permit selection and alteration of chilled water temperature from a central EMS, or as a function of return chilled water temperature, remote temperature, or chiller load.

Indicator panel shall provide the chiller operator with instant self-diagnostic capability. Panel shall be located at machine or remote.

Power demand limit shall permit selection of power limit from central EMS or from stepped contact closure of 80/60/40%.

Lead-lag control shall be provided when 2 machines are installed in series or parallel Centralized control panel with the following capabilities shall be provided.

- Parallel operation
- Series operation with common control point
- Two chiller operations
- Uneven sized chillers working together
- Independent control of chillers either manually or automatically
- Reassignment of lead-lag hierarchy
- Automatic standby

Structural supports

(Note to Specifier: select appropriate paragraph)

Chiller manufacturer shall furnish soleplate and isolation pad assembly for mounting and leveling chiller on a concrete base.

or

Contractor shall furnish and install isolation mounts for the chiller as indicated on the drawings.

Insulation

The compressor motor, purge chamber and miscellaneous piping shall be factory insulated by the chiller manufacturer. Optional cooler and suction elbow insulation shall be factory applied or cooler and suction elbow shall be field insulated by contactor. Insulation shall be 3/4 in. (19 mm) thick, fireproof, and have thermal conductivity not exceeding 0.28 Btu \cdot in./ hr \cdot ft² \cdot °F (0.0404 W/m \cdot °C).

Cooler water box covers shall be field insulated.

Compressor motor starter

The chiller machine manufacturer shall furnish unit mounted or free-standing Star-Delta closed transition type starter NEMA 1 enclosure. (For voltages above 660 volts, across-the-line type starter shall be furnished free-standing.)

Flow switches

Contractor or manufacturer shall furnish flow switches, to be installed by the contractor in chilled water and condenser water piping of each machine, which make contact when flow is established. Flow switches shall be mounted in horizontal run at least 5 diameters downstream from bend or tee.

Thermometers and gages

Contractor or manufacturer shall furnish a set of four 9-in. adjustable, indicating-type mercury filled thermometers, with separable socket, in glass faced metal cases to be installed by the contractor They shall be placed in the piping adjacent to the machine in the following locations:

- 1. Condenser water line entering condenser
- 2. Condenser water line leaving condenser
- 3. Chilled water line entering cooler.
- 4. Chilled water line leaving cooler

Thermometer bulb shall project sufficiently into pipe to accurately measure water temperature. Cases shall clear insulation.

Contractor shall provide and install gage valves and gages so that cooler and condenser water pressure difference across these vessels is indicated Gages shall be 4-1/2 dial, indicating at approximate mid-scale point.

Thermometers and gages shall be mounted in a readily accessible location and easily read in a standing position from the equipment room floor

Start-up service for chillers installed in the U.S. and Canada shall be provided by a factory-trained technician employed by the chiller manufacturer who shall leak test, refrigerant pressure test, evacuate, dehydrate, charge, calibrate the controls and start the chiller. For chillers installed elsewhere, manufacturer shall have service representative available for start-up assistance.

Manufacturer's operating and maintenance instruction manual and parts list (minimum of 2 sets for owner) shall be provided.

