
RECEIVED APR 1 9 1990

MODEL SSD-WC-II

DESCRIPTION

Model SSD-WC-II Terminals are designed for use in low, medium or high pressure, variable air volume, single duct systems requiring hot water reheating or terminal heating of the primary supply air. The SSD-WC-II's many control sequences represent the broadest range of standard control options in the industry providing infinite design flexibility to meet any system requirement.

Model SSD-WC-II throttling-type Terminal incorporates a single damper blade, which operates through a 45° arc, providing throttling capability in all damper positions — a feature not possible with 90° arc single or multi-blade dampers used in competitive equipment.

Standard water coils available with the SSD-WC-II have been computer-selected to provide maximum efficiency at the lowest possible cost.

Coils for the Model SSD-WC-II are shipped separately for field attachment to the Terminal, or factory-mounted at extra cost.

CONSTRUCTION

Model SSD-WC-II Terminals are manufactured of zinc-coated steel: 24-gauge casing, 16-gauge damper and 20-gauge damper seat. (Heavier casing gauges are available at extra cost.) Assembly of the casing is by means of a mechanical lock, insuring the tightest possible construction; maximum air leakage—2% at 3" water gauge.

The basic Terminal is including the Water Coil is 19" in length through size 18 and $12\frac{1}{2}$ " in height. All units are provided with round, oval or rectangular inlet collars and slip-and-drive outlets as standard. Optional round, oval or rectangular discharge collars are available at extra cost.

Pressure-independent units are furnished with an inlet Averaging Sensor which may be removed without disconnecting the inlet duct or flex. All other control components are accessible outside of the Terminal casing. All SSD-WC-II casings are internally lined with V_2 ", 4#dual density, coated fiberglass, complying with N.F.P.A. 90-A and U.L. 181. No raw edges are exposed to the air stream. Special insulation coatings are available for clean-room, hospital and laboratory applications.

Water coils are constructed of pure aluminum fins of .005" to .010" thickness, with die-formed spacer collars to maintain uniform spacing. Fins are mechanically affixed to .017" copper tubes, insuring maximum heat transfer. All ETI Coils are tested at 320 psig minimum pressure for leaks, using air under warm water.

INLET EFFECT — All SSD models are tested with straight inlet connection: If installed with other than straight connection, a shift in the set point may result. Units include an averaging probe to assist in overcoming poor inlet effect, however the controller may require field trim adjustment.

PERFORMANCE

Model SSD-WC-II units are available as system pressure-independent or system pressure dependent. The space thermostat controls the SSD-WC-II in either case, providing desired temperature by varying the air volume to the space served. Pressure-independent models are equipped with minimum/maximum air volume dials for rapid field setting; set points are maintained, regardless of system pressure fluctuations. Pressure-dependent models operate only in response to the room thermostat demand, and may fluctu-

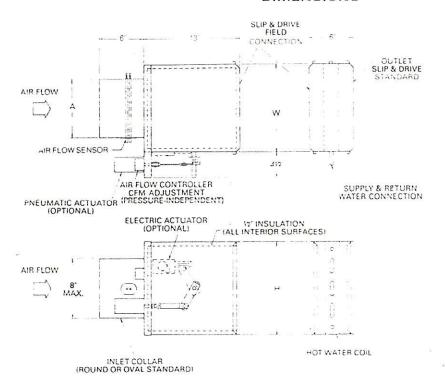
ate through their range as the system pressure changes. Pressure dependent models are not recommended for large systems.

SSD-WC-II units will operate efficiently at pressures from as low as .03" \(\Delta P \) (pneumatic) and .015" \(\Delta P \) (electronic).

Consult coil performance charts for coil selection and determination of air pressure drop through coil. Air pressure drop through coil is additive to pressure drop of Terminal.

SELECTION

Model SSD-WC-II units should be selected in the mid to upper-mid range of the performance table (CFM) to insure maximum operating efficiency. Published performance val-


ues have been established by actual test with the max (CFM) set for the rated value. The recommended selection range will produce the quietest possible system.

Testing — all ENVIRO-TEC™ Terminals are tested and rated in accordance wth ADC, ARI and ASHRAE standards as applicable.

CONTROLS

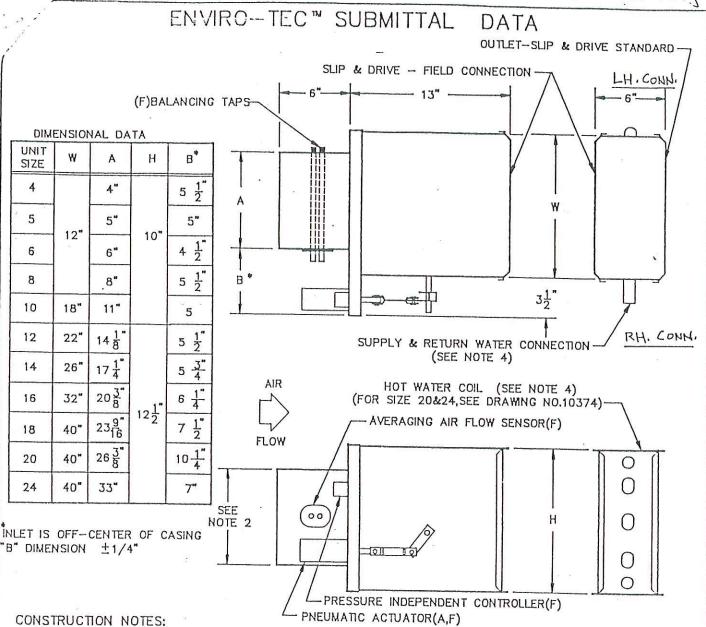
Terminals are available with pneumatic or electronic controls. Control sequence descriptions and reproducible schematics are shown in Control Sequence Guide CSP 187 (pneumatic) and CSE 287 (electronic).

DIMENSIONS

	Unit Size	W Dim.	A Dim.	H Dim.
Ì	4	12"	4"	10"
1	5	12"	5"	10"
Ì	6	12"	6"	10"
İ	8	12"	8"	10"
1	10	18"	11"	10"
1	12	22"	141/4"	121/2"
1	14	26"	171/4"	121/2"
1	16	32"	20%"	121/2"
-	18	40"	23%6"	121/2"
-	20	40"	263/8"	121/2"
İ	24	40"	33"	121/2"

oval inlet
rectangular inlet

PERFORMANCE DATA


			Model 9			m Noise	Critorian	INC		
			Min.	Λno	Ps + 1.5"	Min. \triangle F	Dc + 2 0			
Terminal Size	CFM	Min. △Pt	Disch.	Rad.	Disch.	Ps + 0.75" Rad.	Disch.	Rad.	Disch.	Rad.
U.LU	100	.11			20		27	_	33	_
4	150	7 × 24 × 4	7:54	**************************************	24		33	****	36	**: ·
	200	.39	_	_	33		39	21	42	27
	175	.11			· · ·	_	32	-	37	_
5	265	23	21-12-15		27 ***	- THE	34	-2 400 1 2 2	2411	20
120	350	.40		_	31	_	38		45	25
	250	.11	_		_		31		35	20
6	3750 Mg/F	24	ودالا بمنت أوادا	بداعله وها	e 1. 27 Se	males e	33		40	24
	500	.41	_		28	_	35	23	43	28
	500	.06	-	_	1	-	33		40	23
8	750	talim 18 rece	come.	المصداحة	26	A	35	20	41	
	1000	.27	-		30	-	36	23	42	56
	750	.08		_	23	_	33		38	22
10	1125 n	16 mes	المالية المالية	- 4	27		34	> 21.	40	25
(4.07%)	1500	27	20	T -	33	21	36	25	41	28
	1000	.09		_	25	-	34	-	40	22
12	1500	765 119 POTUS	1210	W 77.04	287	3.3.	36 *	· 21 ···	→ 43 ·	÷ 25
	2000	.33	26	_	36	21	39	24	45	30
	1250	09	_	-	25	-	33	l –	39	26
14	1875	25 at 18 News	24	A	34	11.62.24	38	23	43	27
	2500	.32	27		36	24	41	26	47	31
	1 1600	.09	-		27		35		10	26
16	2400	19	20 -		31	20	37	24	43	31
	3200	33	28	200	36	26	39	28	45	34
	1900	09	-		31		36	23	43	30
18	2850	.20	26		34	22	40	28	45	: 35
	3800	34	34		37	27	42	33	49	37
	2300	.08	-		31		36	21	40	26
20	3450	17/1	23		33	- 20	~ 39	26	43	31
	4600	29	29		35	25	42	31	46	34
	2900	07	20		33	-	38	24	42	29
24	4350 A350		27.		34	24	37 41 Th	30	45	: 34
	5800	25	34	21	37	30	44	35	48	39

Performance data is based on tests conducted in accordance with Industry Standard 880.

\[\Delta\text{Pt} is the total pressure difference between the terminal inlet and discharge. This does not include pressure requirement of not water coil. Refer to coil tables to obtain this value which must be added to min. \(\Delta\text{Pt} above for total pressure drop across the assembly. This value does not include.) pressure losses downstream of the terminal unit Discharge NC levels are based on 10dB room attenuation, five feet of infed duct pownstream, and a maximum of 300 CFM per diffuser. Refer to page 8 for sound power correction factors if system conditions vary greatly from these assumptions. Padiated NC levels are based on 10 dB room absorption and ceiling sound transmission class 35-39.

Blank space (-) indicates NC level less than 20.

Carlos No. or Spread No. of the Contract of

- 1. MATERIAL: Zinc coated steel; Casing -24 gauge; Air valve -16 gauge; Valve seat -20 gauge.
- INLET COLLAR: Same size as nominal flex duct size. Unit sizes 8 and smaller have round inlets.
 Unit sizes 10 through 18 have oval inlets with 8" vertical dimension. Unit sizes 20 and 24 have rectangular inlets with 8" vertical dimension.
- 3. INSULATION: 1/2" thick dual density 4.0 P.C.F. fiberglass complying with NFPA 90—A and UL 181. All exposed edges are sealed.
- 4. HOT WATER COIL: Copper tubing with aluminum fins, 10 fins per inch. Supply and Return water connections: Unit sizes 4 through 14— 1 Row coil: 1/2" O.D., 2 Row Coil: 5/8" O.D.; Unit sizes 16 through 24— 1 Row Coil: 5/8" O.D., 2 Row Coil: 7/8" O.D.. Coil to be externally insulated by others if required.

NOTE: All drawings subject to change without prior notice.

- (A) PRESSURE DEPENDENT SERIES SDOOD

(F) PRESSURE INDEPENDENT - SERIES SD400

ENVIRONMENTAL TECHNOLOGIES, A CORPORATION

MODEL SSD-WC-II ---PNEUMATIC CONTROLS

DAYEN B. D	ADAMS	DATE	16	APR	84
PEY HO:		REV DATES		SEP	88
APPROVED BY	:OW.	DRAWNO HO	1	03	66

AA+F CHICAGO

SUBMITTAL SLIP & DRIVE CONNECTION AIR FLOW AIR FLOW SENSOR 317 AIR FLOW CONTROLLER AIR FLOW CONTROLLER CFM ADJUSTMENT PNEUMATIC ACTUATOR IPRESSURE-INDEPENDENTI (OPTIONAL) SUPPLY & RETURN WATER CONNECTION M'INSULATION SURFACES! AIR FLOW

DIMENSIONS

	Unit Slze	W Dlm.	A Dim.	H Dlm.
Ì	4	12"	4"	10"
Ì	5	12"	5"	10"
1	6	12"	6"	10"
I	8	12"	8"	10"
1	10	18"	11"	10"
1	12	22"	1414"	121/2"
1	14	26"	17!4"	1215"
	16	32"	2034"	1215
	18	40"	23% 6"	121/2"
	20	40"	263%"	121/2"
	24	40"	33"	121/2"

- oval inlet
- **rectangular inlet

INCET COLLAR
IROUND OR OVAL STANDARDI

1...

MAX.

PERFORMANCE DATA

HOT WATER COIL

			Model 8	38D.V	VC-11							
			Room Noise Criterion (NC)									
Terminal		₩n.	Min. APs		Mn. APs+0.75*		I Min. △P3 + 1.5"		Min. AP3+30			
Siza	CFM	△Pt	Disch.	Rad.	Disch.	Rad.	Disch.	Rad.	Discn.	Rad.		
	100	p11	T		20		27		33	-		
4	150	24	-	_	24		33		36			
	200	39			33	_	39	21	42	27		
	175	11		_			32		37	-		
5	265	23	1 -	_	27		34		41	20		
	350	10	-	_	31		38		45	25		
	250	11	T	_			31		35	20		
6	375	24	T		27		33		40	24		
	500	1 41			23		35	23	43	29		
	500	C6	T	_	-		33		40	23		
8	750	16	1	_	26		35	20	41	25		
	1000	27	1 -		30		36	23	42	23		
	750	C8	1 -		23		33	- 23	38	22		
10	1125	15	1 -		27		34	21	40	25		
	1500	27	1 20		33	21	36	25	41	23		
1	1000	C9	-		25		34		40	22		
12	1500	19	21		28		36	21	43	25		
100000	2000	33	26		36	21	39	24	45	30		
	1250	09	<u> </u>	_	25		33	- 24	39	25		
14	1875	19	24		34		33	23	43	27		
100	2500	32	27	_	36	24	41	26	47	31		
	1600	59	-	_	27		35	- 20	40	25		
16	2400	1 '9	20	_	31	50	37	24	43	31		
	3200	33	28	_	36	25	39	28	45	31		
	1900	09		_	31	- 23	35	23	43	30		
18	2950	20	25		34	22	10	58	45	35		
	3800	34	34		37	27	42	33	19	37		
	2300	28	T		31		36	21	-19			
20	3450	17	23		33	05	39	25	13	26		
	-600	29	29	_	35	25	15	31	-13	31		
	2900	1 07	20		33	- 23	33	24	42			
24	-350	15	27		34	74	41	30	45	39		
Millores	5800	25	34	21	37	30	-14	35	18	34		

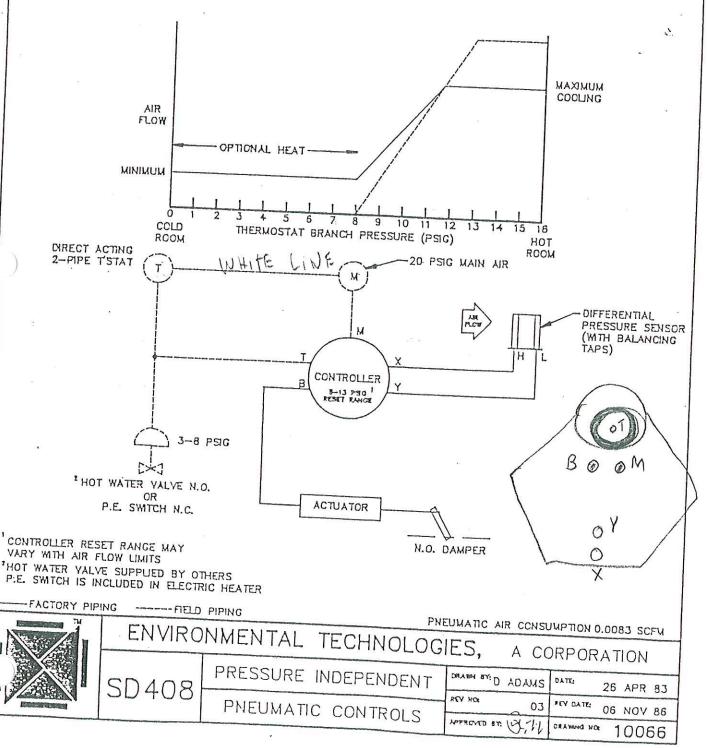
Performance data is based on tests conducted in accordance with Industry Standard 880.

APT is the total pressure difference cerween the terminal intet and discharge. This does not include cressure requirement of hot water coil. Refer to coil tables to obtain this value which must be added to min. APT above for total pressure drop across the assembly. This value does not include

coil fables to obtain this value which must be added to min. ZER above for total pressure drop across the assembly, this value poes not include pressure losses downstream of the terminal unit.

Discharge NC levels are cased on 10dB room attenuation, five feet of fined duct downstream, and a maximum of 300 CFM per diffuser. Peter to page 8 for sound power correction factors if system conditions vary greatly from these assumptions. Radiated NC levels are cased on 10 dB room absorption and ceiling sound transmission class 35-39.

Blank space (-) indicates NC level less than 20


ENVIRONMENTAL TECHNOLOGIES, A COPPORATION

MODEL SSD-WC-II PERFORMANCE DATA

Drawner Manca	Ca: 21 APR 87
Revision in 00	Hev-sinn Jate
Approved by Q.W.	Urawing 10 11479

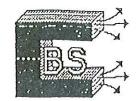
ENVIRO-TEC™ SUBMITTAL DATA

A direct acting, two-pipe thermostat is required. Damper is normally open. Optional reheat control will require a normally open hot water valve or a normally closed P.E. switch. On a rise in space temperature, air flow is increased. On a drop in space temperature, air flow is decreased. Maximum and minimum CFM set points are field adjustable. Control of supply air to room is between these set points. If the space temperature continues to drop at minimum air flow, the thermostat will energize an optional electric heater or hot water coil valve to provide reheat.

ENVIRO-GRAM

NO:

74-052484


SUBJECT: R77 RESET VOLUME CONTROLLER

DATE:

05/24/84

- I. CALIBRATION PROCEDURE FOR R77 VELOCITY CONTROLLER
 - A. Direct Acting (Beige Unit)
 - 1. Adjust the thermostat input to the controller to 0 PSIG.
 - 2. Turn the center knob (LO) until the desired low velocity pressure or "CFM" is indicated on a suitable gauge; clockwise increases velocity.
 - 3. Adjust the thermostat input to 15 PSIG or greater.
 - 4. Turn the outer knob (HI) until the desired high velocity pressure of "CFM" is indicated; clockwise increases velocity.
 - B. Reverse Acting (Grey Unit)
 - 1. Adjust the thermostat input to the controller to 0 PSIG.
 - 2. Turn the center knob (HI) until the desired high velocity pressure or "CFM" is indicated on a suitable gauge; counter-clockwise increases velocity.
 - 3. Adjust the thermostat input to 15 PSIG or greater.
 - 4. Turn the outer knob (LO) until the desired low velocity pressure or "CFM" is indicated; counter-clockwise increases velocity.
- II. CALIBRATION PROCEDURE FOR R77 VELOCITY CONTROLLER WHEN LOW FLOW LIMIT IS ZERO
 - A. Direct Acting (Beige Unit)
 - Adjust the thermostat input to the controller to 0 PSIG.
 - 2. Adjust the low flow from any setting toward zero. When the flow gets to zero, the branch output will begin to rise quickly toward 20 PSIG or line pressure. When branch reaches 18 PSIG, note the position of the low adjustment knob and rotate it counter-clockwise one-half turn which will insure a hard close-off without detracting from the reset band.
 - 3. Adjust the thermostat input to 15 PSIG or greater.
 - 4. Adjust the high flow limit as in the normal procedure.
 - B. Reverse Acting (Grey Unit)
 - 1. Adjust the thermostat input to the controller to 0 PSIG.
 - 2. Adjust the high flow limit as in the normal calibration procedure.
 - 3. Adjust the thermostat input to 13 PSIG or greater.
 - 4. Adjust the low flow from any setting toward zero. When the flow gets to zero, the branch output will drop off quickly towards 0 PSIG. Note the position of the low flow adjustment knob at 2 PSIG and rotate it one-half turn clock-wise to insure a hard close-off without detracting from the reset band.

ENVIRONMENTAL TECHNOLOGIES
A CORPORATION

COMPLETE BALANCING SERVICES, INC. 983 W. Wise Road - 2nd. Fir. Schaumburg, IL 60193 (312) 351-3113

VENTILATION TEST REPORT - (CONT)

JOB NAME:	PAGE:of
SYSTEM:	DATE:

	DAIC								
AREA SERVED	OPENING NO. SIZE		K FACTOR	REQU VEL		PERCE	NT ÆGE f REMENT	ACTUAL	
	· I	SILE	FACIOR	AFL	CFM	REQUIR	REMENT	YEL	CFM
		·							
					2				
					-	· -			
×			!		0 a				
	, .		-			İ			
*				3	(1 *)				
•									
		7.0	-						
52.6		12							
		77		·.					<u> </u>
<u> </u>									
36 36									
					<u> </u>				
							-		
• ≅ .t.									
	-				· · ·	·			
				10 10 11					
					•	!			
					<u> </u>	24			
*				1				•	
				0/					
					= -				
	-			§ .					
							·		
			•						