A spreadsheet should be completed for each calculation that is being made[1]
Only need to fill in the cells of color   Constants
K 85
1. Write equation that is being used V = K*Cp*sqrt(deltaP*T/(Pa*M)) Cp 0.84
2. Uncertainty Sources   deltaP T Pa M          
xi[2] 25 78 29 29          
y = 108.7220217
4. Systematic Uncertainties u 0.1 0.2 0.01 0.001          
u2 0.01 0.04 0.0001 0.000001 0 0 0 0 0
xi + u(xi) 25.1 78.2 29.01 29.001 0 0 0 0 0
y(xi + u(xi) 108.94 108.8613 108.7033 108.7201472
5. Determine Sensitivity c 2.1723 0.69649 -1.874033 -1.874469138          
c2 4.7188 0.485098 3.512 3.513634549 0 0 0 0 0
6. Level of Covariance A r 0 0.5 0.2 0.2[3]
  0 0.1 -0.1
    0 -0.1
      0
* Covariance is symmetrical so only upper triangular needs to be calculated
B r*u(xi)u(xk) 0 0.01 0.0002 0.00002
  0 0.0002 -0.00002
    0 -0.000001
      0
C ci*ck 0 1.512964 -4.070906 -4.071853696
  0 -1.305245 -1.305548737
    0 3.512816958
      0
Sum of the product B * C for each column
0.01513 -0.001075 -5.88389E-05
7. Combined Uncertainty 0.0472 0.019404 0.000351 3.51363E-06 0 0 0 0 0
1.2332647
 
8. Expanded Uncertainty 3.4240988
Confidence Interval = 0.95
Degrees of Freedom (n-1) = 4
Sample Variance = 1.2
Y: V = 108.7 ± 3.4240988

[1]
kaita: Each calculation has an uncertainty that goes along with it, these uncertainties can be combined together using the root sumed square method (RSS).

[2]
kaita: Mean value

[3]
Coefficient Matrix for the Level of Covariance:
These values must be determined for each pair of parameters r(i,k) for which i is the row and k is the column.